First Semester B.E. Degree Examination, Dec.2019/Jan.2020 Calculus and Linear Algebra

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. With usual notations prove that
$$\tan \phi = r \left(\frac{d\theta}{dr} \right)$$
. (06 Marks)

b. Find the angle between the curves
$$r = \sin\theta + \cos\theta$$
 and $r = 2\sin\theta$ (06 Marks)

$$y = a \log \sec \left(\frac{x}{a}\right)$$
 is $a \sec (x/a)$. (08 Marks)

OR

2 a. Show that the pairs of curves
$$r = a(1 + \cos\theta)$$
 and $r = b(1-\cos\theta)$ intersect each other Orthogonally. (06 Marks)

b. Find the pedal equation of the curve
$$r^n = a^n \cos n\theta$$
. (06 Marks)

c. Show that the evolute of
$$y^2 = 4ax$$
 is $27ay^2 = 4(x + a)^3$. (08 Marks)

Module-2

b. Evaluate
$$\lim_{x \to 0} \left[\frac{a^x + b^x + c^x}{3} \right]^{1/x}$$
 (07 Marks)

c. If
$$U = f(x-y, y-z, z-x)$$
, prove that $\frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} + \frac{\partial U}{\partial z} = 0$ (07 Marks)

OR

c. Find
$$\frac{\partial(u, v, w)}{\partial(x, y, z)}$$
 where $u = x^2 + y^2 + z^2$, $v = xy + yz + zx$, $w = x + y + z$. (07 Marks)

Module-3

5 a. Evaluate
$$\int_{0}^{1\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} xyz \, dzdydx$$
 (06 Marks)

b. Evaluate
$$\int_{-2}^{2} \int_{0}^{\sqrt{4-x^2}} (2-x) dy dx$$
 by changing the order of integration. (07 Marks)

c. Prove that
$$\beta(m, n) = \frac{\lceil (m) . \lceil (n) \rceil}{\lceil (m+n) \rceil}$$
 (07 Marks)

- 6 a. Evaluate $\iint y \, dx \, dy$ over the region bounded by the first quadrant of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
 - b. Find by double integration the area enclosed by the curve $r=a~(1+Cos\theta)$ between $\theta=0$ and $\theta=\pi$. (07 Marks)
 - c. Show that $\int_{0}^{\pi/2} \frac{d\theta}{\sqrt{\sin \theta}} \times \int_{0}^{\pi/2} \sqrt{\sin \theta} \ d\theta = \pi.$ (07 Marks)

Module-4

7 a. Solve
$$\frac{dy}{dx} + \frac{y\cos x + \sin y + y}{\sin x + x\cos y + x} = 0$$
 (06 Marks)

- b. Solve $r\sin\theta \cos\theta \frac{dr}{d\theta} = r^2$ (07 Marks)
- c. A series circuit with resistance R, inductance L and electromotive force E is governed by the differential equation $L\frac{di}{dt} + Ri = E$, where L and R are constants and initially the current i is zero. Find the current at any time t. (07 Marks)

OR

8 a. Solve $(4xy + 3y^2 - x)dx + x(x + 2y)dy = 0$. (06 Marks) b. Find the orthogonal trajectories of the family of parabolas $y^2 = 4ax$. (07 Marks) c. Solve $p^2 + 2py \cot x = y^2$. (07 Marks)

Module-5

- 9 a. Find the rank of $\begin{bmatrix} 1 & 2 & 3 & 2 \\ 2 & 3 & 5 & 1 \\ 1 & 3 & 4 & 5 \end{bmatrix}$ by elementary row transformations. (06 Marks)
 - b. Apply Gauss-Jordan method to solve the system of equations $2x_1 + x_2 + 3x_3 = 1$,

 $4x_1 + 4x_2 + 7x_3 = 1,$

 $2x_1 + 5x_2 + 9x_3 = 3$. (07 Marks)

c. Find the largest Eigen value and the corresponding Eigen vector of the matrix $A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$ by power method. Using initial vector $(100)^{T}$. (07 Marks)

OR

10 a. Solve by Gauss elimination method

x-2y+3z=2,

3x - y + 4z = 4,

2x + y - 2z = 5 (06 Marks)

b. Solve the system of equations by Gauss-Seidal method

20x + y - 2z = 17, 3x + 20y - z = -18,

2x - 3y + 20z = 25 (07 Marks)

c. Reduce the matrix $A = \begin{bmatrix} -1 & 3 \\ -2 & 4 \end{bmatrix}$ to the diagonal form. (07 Marks)